Initial commit

This commit is contained in:
chapeau 2021-05-13 18:33:59 +02:00
commit dd8f2af26e
14 changed files with 2974 additions and 0 deletions

1
.gitignore vendored Normal file
View file

@ -0,0 +1 @@
config.ini

3
.gitmodules vendored Normal file
View file

@ -0,0 +1,3 @@
[submodule "re2oapi"]
path = re2oapi
url = https://gitlab.federez.net/re2o/re2oapi.git

538
auth.py Normal file
View file

@ -0,0 +1,538 @@
# -*- mode: python; coding: utf-8 -*-
# Re2o est un logiciel d'administration développé initiallement au Rézo Metz. Il
# se veut agnostique au réseau considéré, de manière à être installable en
# quelques clics.
#
# Copyirght © 2017 Daniel Stan
# Copyright © 2017 Gabriel Détraz
# Copyright © 2017 Lara Kermarec
# Copyright © 2017 Augustin Lemesle
# Copyright © 2020 Corentin Canebier
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
"""
Python backend for freeradius.
This file contains definition of some functions called by freeradius backend
during auth for wifi, wired device and nas.
Other examples can be found here :
https://github.com/FreeRADIUS/freeradius-server/blob/master/src/modules/rlm_python/
Inspired by Daniel Stan in Crans
"""
from configparser import ConfigParser
from re2oapi import Re2oAPIClient
import sys
from pathlib import Path
import subprocess
import logging
import traceback
import radiusd
from requests import HTTPError
import urllib.parse
class RadiusdHandler(logging.Handler):
"""Logs handler for freeradius"""
def emit(self, record):
"""Log message processing, level are converted"""
if record.levelno >= logging.WARN:
rad_sig = radiusd.L_ERR
elif record.levelno >= logging.INFO:
rad_sig = radiusd.L_INFO
else:
rad_sig = radiusd.L_DBG
radiusd.radlog(rad_sig, str(record.msg))
# Init for logging
logger = logging.getLogger("auth.py")
logger.setLevel(logging.DEBUG)
formatter = logging.Formatter("%(name)s: [%(levelname)s] %(message)s")
handler = RadiusdHandler()
handler.setFormatter(formatter)
logger.addHandler(handler)
def radius_event(fun):
"""Decorator for freeradius fonction with radius.
This function take a unique argument which is a list of tuples (key, value)
and return a tuple of 3 values which are:
* return code (see radiusd.RLM_MODULE_* )
* a tuple of 2 elements for response value (access ok , etc)
* a tuple of 2 elements for internal value to update (password for example)
Here, we convert the list of tuples into a dictionnary.
"""
def new_f(auth_data):
""" The function transforming the tuples as dict """
if isinstance(auth_data, dict):
data = auth_data
else:
data = dict()
for (key, value) in auth_data or []:
# Beware: les valeurs scalaires sont entre guillemets
# Ex: Calling-Station-Id: "une_adresse_mac"
data[key] = value.replace('"', "")
try:
# TODO s'assurer ici que les tuples renvoy s sont bien des
# (str,str) : rlm_python ne dig re PAS les unicodes
return fun(data)
except Exception as err:
exc_type, exc_instance, exc_traceback = sys.exc_info()
formatted_traceback = "".join(traceback.format_tb(exc_traceback))
logger.error("Failed %r on data %r" % (err, auth_data))
logger.error("Function %r, Traceback : %r" %
(fun, formatted_traceback))
return radiusd.RLM_MODULE_FAIL
return new_f
@radius_event
def instantiate(*_):
"""Instantiate api connection
"""
logger.info("Instantiation")
path = Path(__file__).resolve(strict=True).parent
config = ConfigParser()
config.read(path / 'config.ini')
api_hostname = config.get('Re2o', 'hostname')
api_password = config.get('Re2o', 'password')
api_username = config.get('Re2o', 'username')
def get_api_client():
"""Gets a Re2o, or tries to initialize one"""
if get_api_client.client is None:
get_api_client.client = Re2oAPIClient(
api_hostname, api_username, api_password, use_tls=True)
return get_api_client.client
get_api_client.client = None
global api_client
api_client = get_api_client
@radius_event
def authorize(data):
"""Here, we test if the Nas is known.
- If the nas is unknown, we assume that it is a 802.1X request,
- If the nas is known, we apply the 802.1X if enabled,
- It the nas is known AND nas auth is enabled with mac address, returns accept here
"""
nas = data.get("NAS-IP-Address", data.get("NAS-Identifier", None))
username = data.get("User-Name", "")
# For proxified request, split
username = username.split("@", 1)[0]
mac = data.get("Calling-Station-Id", "")
# Get all required objects from API
data_from_api = api_client().view(
"radius/authorize/{0}/{1}/{2}".format(
urllib.parse.quote(nas or "None", safe=""),
urllib.parse.quote(username or "None", safe=""),
urllib.parse.quote(mac or "None", safe="")
))
nas_type = data_from_api["nas"]
user = data_from_api["user"]
user_interface = data_from_api["user_interface"]
if not nas_type or nas_type and nas_type["port_access_mode"] == "802.1X":
result, log, password = check_user_machine_and_register(
nas_type, user, user_interface, nas, username, mac)
logger.info(log.encode("utf-8"))
logger.info(username.encode("utf-8"))
if not result:
return radiusd.RLM_MODULE_REJECT
else:
return (
radiusd.RLM_MODULE_UPDATED,
(),
((str("NT-Password"), str(password)),),
)
else:
return (radiusd.RLM_MODULE_UPDATED, (), (("Auth-Type", "Accept"),))
@radius_event
def post_auth(data):
""" Function called after the user is authenticated
"""
nas = data.get("NAS-IP-Address", data.get("NAS-Identifier", None))
nas_port = data.get("NAS-Port-Id", data.get("NAS-Port", None))
mac = data.get("Calling-Station-Id", None)
# Get all required objects from API
data_from_api = api_client().view(
"radius/post_auth/{0}/{1}/{2}".format(
urllib.parse.quote(nas or "None", safe=""),
urllib.parse.quote(nas_port or "None", safe=""),
urllib.parse.quote(mac or "None", safe="")
))
nas_type = data_from_api["nas"]
port = data_from_api["port"]
switch = data_from_api["switch"]
# If proxified request
if not nas_type:
logger.info("Proxified request, nas unknown")
return radiusd.RLM_MODULE_OK
# If the request is from a switch (wired connection)
if switch:
# For logging
sw_name = switch["name"] or "?"
room = port["room"] or "Unknown room" if port else "Unknown port"
out = decide_vlan_switch(data_from_api, mac, nas_port)
reason, vlan_id, decision, attributes = out
if decision:
log_message = "(wired) %s -> %s [%s%s]" % (
sw_name + ":" + nas_port + "/" + str(room),
mac,
vlan_id,
(reason and ": " + reason),
)
logger.info(log_message)
# Apply vlan from decide_vlan_switch
return (
radiusd.RLM_MODULE_UPDATED,
(
("Tunnel-Type", "VLAN"),
("Tunnel-Medium-Type", "IEEE-802"),
("Tunnel-Private-Group-Id", "%d" % int(vlan_id)),
)
+ tuple(attributes),
(),
)
else:
log_message = "(wired) %s -> %s [Reject %s]" % (
sw_name + ":" + nas_port + "/" + str(room),
mac,
(reason and ": " + reason),
)
logger.info(log_message)
return (radiusd.RLM_MODULE_REJECT, tuple(attributes), ())
# Else it is from wifi
else:
return radiusd.RLM_MODULE_OK
def check_user_machine_and_register(nas_type, user, user_interface, nas_id, username, mac_address):
"""Check if username and mac are registered. Register it if unknown.
Return the user ntlm password if everything is ok.
Used for 802.1X auth
"""
if not user:
# No username provided
return (False, "User unknown", "")
if not user["access"]:
return (False, "Invalid connexion (non-contributing user)", "")
if user_interface:
if user_interface["user_pk"] != user["pk"]:
return (
False,
"Mac address registered on another user account",
"",
)
elif not user_interface["active"]:
return (False, "Interface/Machine disabled", "")
elif not user_interface["ipv4"]:
# Try to autoassign ip
try:
api_client().view(
"radius/assign_ip/{0}".format(
urllib.parse.quote(mac_address or "None", safe="")
))
return (True, "Ok, new ipv4 assignement...", user.get("pwd_ntlm", ""))
except HTTPError as err:
return (False, "Error during ip assignement %s" % err.response.text, "")
else:
return (True, "Access ok", user.get("pwd_ntlm", ""))
elif nas_type:
# The interface is not yet registred, try to autoregister if enabled
if nas_type["autocapture_mac"]:
try:
api_client().view(
"radius/autoregister/{0}/{1}/{2}".format(
urllib.parse.quote(nas_id or "None", safe=""),
urllib.parse.quote(username or "None", safe=""),
urllib.parse.quote(mac_address or "None", safe="")
))
return (True, "Access Ok, Registering mac...", user["pwd_ntlm"])
except HTTPError as err:
return (False, "Error during mac register %s" % err.response.text, "")
return (False, "Autoregistering is disabled", "")
else:
return (False, "Unknown interface/machine", "")
else:
return (False, "Unknown interface/machine", "")
def set_radius_attributes_values(attributes, values):
"""Set values of parameters in radius attributes"""
return (
(str(attribute["attribute"]), str(attribute["value"] % values))
for attribute in attributes
)
def decide_vlan_switch(data_from_api, user_mac, nas_port):
"""Function for selecting vlan for a switch with wired mac auth radius.
Two modes exist : in strict mode, a registered user cannot connect with
their machines in a non-registered user room
Sequentially :
- all modes:
- unknown NAS : VLAN_OK,
- unknown port : Decision set in Re2o RadiusOption
- No radius on this port : VLAN_OK
- force : replace VLAN_OK with vlan provided by the database
- mode strict:
- no room : Decision set in Re2o RadiusOption,
- no user in this room : Reject,
- user of this room is banned or disable : Reject,
- user of this room non-contributor and not whitelisted:
Decision set in Re2o RadiusOption
- all modes :
- mac-address already registered:
- related user non contributor / interface disabled:
Decision set in Re2o RadiusOption
- related user is banned:
Decision set in Re2o RadiusOption
- user contributing : VLAN_OK (can assign ipv4 if needed)
- unknown interface :
- register mac disabled : Decision set in Re2o RadiusOption
- register mac enabled : redirect to webauth (not implemented)
Returns:
tuple with :
- Reason of the decision (str)
- vlan_id (int)
- decision (bool)
- Other Attributs (attribut:str, value:str)
"""
# Get values from api
nas_type = data_from_api["nas"]
room_users = data_from_api["room_users"]
port = data_from_api["port"]
port_profile = data_from_api["port_profile"]
switch = data_from_api["switch"]
user_interface = data_from_api["user_interface"]
radius_option = data_from_api["radius_option"]
EMAIL_STATE_UNVERIFIED = data_from_api["EMAIL_STATE_UNVERIFIED"]
RADIUS_OPTION_REJECT = data_from_api["RADIUS_OPTION_REJECT"]
USER_STATE_ACTIVE = data_from_api["USER_STATE_ACTIVE"]
# Values which can be used as parameters in radius attributes
attributes_kwargs = {
"client_mac": str(user_mac),
# magic split
"switch_port": str(nas_port.split(".")[0].split("/")[-1][-2:]),
"switch_ip": str(switch["ipv4"])
}
extra_log = ""
# If the port is unknown, do as in RadiusOption
if not port or not port_profile:
return (
"Unknown port",
radius_option["unknown_port_vlan"] and radius_option["unknown_port_vlan"]["vlan_id"] or None,
radius_option["unknown_port"] != RADIUS_OPTION_REJECT,
set_radius_attributes_values(
radius_option["unknown_port_attributes"], attributes_kwargs),
)
# If a vlan is precised in port config, we use it in place of VLAN_OK
if port_profile["vlan_untagged"]:
DECISION_VLAN = int(port_profile["vlan_untagged"]["vlan_id"])
extra_log = "Force sur vlan %s" % str(DECISION_VLAN)
attributes = ()
else:
DECISION_VLAN = radius_option["vlan_decision_ok"]["vlan_id"]
attributes = set_radius_attributes_values(
radius_option["ok_attributes"], attributes_kwargs)
# If the port is disabled in re2o, REJECT
if not port["state"]:
return ("Port disabled", None, False, ())
# If radius is disabled, decision is OK
if port_profile["radius_type"] == "NO":
return (
"No Radius auth enabled on this port" + extra_log,
DECISION_VLAN,
True,
attributes,
)
# If 802.1X is enabled, people has been previously accepted.
# Go to the decision vlan
if (nas_type["port_access_mode"], port_profile["radius_type"]) == ("802.1X", "802.1X"):
return (
"Accept authentication 802.1X",
DECISION_VLAN,
True,
attributes,
)
# Otherwise, we are in mac radius.
# If strict mode is enabled, we check every user related with this port. If
# all users and clubs are disabled, we reject to prevent from sharing or
# spoofing mac.
if port_profile["radius_mode"] == "STRICT":
if not port["room"]:
return (
"Unkwown room",
radius_option["unknown_room_vlan"] and radius_option["unknown_room_vlan"]["vlan_id"] or None,
radius_option["unknown_room"] != RADIUS_OPTION_REJECT,
set_radius_attributes_values(
radius_option["unknown_room_attributes"], attributes_kwargs),
)
if not room_users:
return (
"Non-contributing room",
radius_option["non_member_vlan"] and radius_option["non_member_vlan"]["vlan_id"] or None,
radius_option["non_member"] != RADIUS_OPTION_REJECT,
set_radius_attributes_values(
radius_option["non_member_attributes"], attributes_kwargs),
)
all_user_ban = True
at_least_one_active_user = False
for user in room_users:
if not user["is_ban"] and user["state"] == USER_STATE_ACTIVE:
all_user_ban = False
if user["email_state"] != EMAIL_STATE_UNVERIFIED and (user["is_connected"] or user["is_whitelisted"]):
at_least_one_active_user = True
if all_user_ban:
return (
"User is banned or disabled",
radius_option["banned_vlan"] and radius_option["banned_vlan"]["vlan_id"] or None,
radius_option["banned"] != RADIUS_OPTION_REJECT,
set_radius_attributes_values(
radius_option["banned_attributes"], attributes_kwargs),
)
if not at_least_one_active_user:
return (
"Non-contributing member or unconfirmed mail",
radius_option["non_member_vlan"] and radius_option["non_member_vlan"]["vlan_id"] or None,
radius_option["non_member"] != RADIUS_OPTION_REJECT,
set_radius_attributes_values(
radius_option["non_member_attributes"], attributes_kwargs),
)
# else: user OK, so we check MAC now
# If mac is unknown,
if not user_interface:
# We try to register mac, if autocapture is enabled
# Final decision depend on RADIUSOption set in re2o
# Something is not implemented here...
if nas_type["autocapture_mac"]:
return (
"Unknown mac/interface",
radius_option["unknown_machine_vlan"] and radius_option["unknown_machine_vlan"]["vlan_id"] or None,
radius_option["unknown_machine"] != RADIUS_OPTION_REJECT,
set_radius_attributes_values(
radius_option["unknown_machine_attributes"], attributes_kwargs),
)
# Otherwise, if autocapture mac is not enabled,
else:
return (
"Unknown mac/interface",
radius_option["unknown_machine_vlan"] and radius_option["unknown_machine_vlan"]["vlan_id"] or None,
radius_option["unknown_machine"] != RADIUS_OPTION_REJECT,
set_radius_attributes_values(
radius_option["unknown_machine_attributes"], attributes_kwargs),
)
# Mac/Interface is found, check if related user is contributing and ok
# If needed, set ipv4 to it
else:
if user_interface["is_ban"]:
return (
"Banned user",
radius_option["banned_vlan"] and radius_option["banned_vlan"]["vlan_id"] or None,
radius_option["banned"] != RADIUS_OPTION_REJECT,
set_radius_attributes_values(
radius_option["banned_attributes"], attributes_kwargs),
)
if not user_interface["active"]:
return (
"Disabled interface / non-contributing member",
radius_option["non_member_vlan"] and radius_option["non_member_vlan"]["vlan_id"] or None,
radius_option["non_member"] != RADIUS_OPTION_REJECT,
set_radius_attributes_values(
radius_option["non_member_attributes"], attributes_kwargs),
)
# If settings is set to related interface vlan policy based on interface type:
if radius_option["radius_general_policy"] == "MACHINE":
DECISION_VLAN = user_interface["vlan_id"]
if not user_interface["ipv4"]:
try:
api_client().view(
"radius/assign_ip/{0}".format(
urllib.parse.quote(user_mac or "None", safe="")
))
return (
"Ok, assigning new ipv4" + extra_log,
DECISION_VLAN,
True,
attributes,
)
except HTTPError as err:
return (
"Error during ip assignement %s" % err.response.text + extra_log,
DECISION_VLAN,
True,
attributes,
)
else:
return (
"Interface OK" + extra_log,
DECISION_VLAN,
True,
attributes,
)

4
config.ini.example Normal file
View file

@ -0,0 +1,4 @@
[Re2o]
hostname =
username =
password =

29
freeradius3/clients.conf Normal file
View file

@ -0,0 +1,29 @@
# Your client radius configuration below
client radius-filaire {
ipaddr =
netmask =
secret =
require_message_authenticator = no
nastype = other
virtual_server = radius-filaire
}
client radius-wifi {
ipaddr =
netmask =
secret =
require_message_authenticator = no
nastype = other
virtual_server = radius-wifi
}
# Parangon (federez)
client parangon {
ipaddr = 185.230.78.47
secret = please_ask_for_a_secret_to_federez_admin
}
# Dodecagon (federez)
client dodecagon {
ipaddr = 163.172.48.168
secret = please_ask_for_a_secret_to_federez_admin
}

View file

@ -0,0 +1,926 @@
# -*- text -*-
##
## eap.conf -- Configuration for EAP types (PEAP, TTLS, etc.)
##
## $Id: f67cbdbff9b6560cec9f68da1adb82b59723d2ef $
#######################################################################
#
# Whatever you do, do NOT set 'Auth-Type := EAP'. The server
# is smart enough to figure this out on its own. The most
# common side effect of setting 'Auth-Type := EAP' is that the
# users then cannot use ANY other authentication method.
#
eap {
# Invoke the default supported EAP type when
# EAP-Identity response is received.
#
# The incoming EAP messages DO NOT specify which EAP
# type they will be using, so it MUST be set here.
#
# For now, only one default EAP type may be used at a time.
#
# If the EAP-Type attribute is set by another module,
# then that EAP type takes precedence over the
# default type configured here.
#
default_eap_type = md5
# A list is maintained to correlate EAP-Response
# packets with EAP-Request packets. After a
# configurable length of time, entries in the list
# expire, and are deleted.
#
timer_expire = 60
# There are many EAP types, but the server has support
# for only a limited subset. If the server receives
# a request for an EAP type it does not support, then
# it normally rejects the request. By setting this
# configuration to "yes", you can tell the server to
# instead keep processing the request. Another module
# MUST then be configured to proxy the request to
# another RADIUS server which supports that EAP type.
#
# If another module is NOT configured to handle the
# request, then the request will still end up being
# rejected.
ignore_unknown_eap_types = no
# Cisco AP1230B firmware 12.2(13)JA1 has a bug. When given
# a User-Name attribute in an Access-Accept, it copies one
# more byte than it should.
#
# We can work around it by configurably adding an extra
# zero byte.
cisco_accounting_username_bug = no
#
# Help prevent DoS attacks by limiting the number of
# sessions that the server is tracking. For simplicity,
# this is taken from the "max_requests" directive in
# radiusd.conf.
max_sessions = ${max_requests}
# Supported EAP-types
#
# We do NOT recommend using EAP-MD5 authentication
# for wireless connections. It is insecure, and does
# not provide for dynamic WEP keys.
#
md5 {
}
#
# EAP-pwd -- secure password-based authentication
#
# pwd {
# group = 19
#
# server_id = theserver@example.com
# This has the same meaning as for TLS.
# fragment_size = 1020
# The virtual server which determines the
# "known good" password for the user.
# Note that unlike TLS, only the "authorize"
# section is processed. EAP-PWD requests can be
# distinguished by having a User-Name, but
# no User-Password, CHAP-Password, EAP-Message, etc.
# virtual_server = "inner-tunnel"
# }
# Cisco LEAP
#
# We do not recommend using LEAP in new deployments. See:
# http://www.securiteam.com/tools/5TP012ACKE.html
#
# Cisco LEAP uses the MS-CHAP algorithm (but not
# the MS-CHAP attributes) to perform it's authentication.
#
# As a result, LEAP *requires* access to the plain-text
# User-Password, or the NT-Password attributes.
# 'System' authentication is impossible with LEAP.
#
leap {
}
# Generic Token Card.
#
# Currently, this is only permitted inside of EAP-TTLS,
# or EAP-PEAP. The module "challenges" the user with
# text, and the response from the user is taken to be
# the User-Password.
#
# Proxying the tunneled EAP-GTC session is a bad idea,
# the users password will go over the wire in plain-text,
# for anyone to see.
#
gtc {
# The default challenge, which many clients
# ignore..
#challenge = "Password: "
# The plain-text response which comes back
# is put into a User-Password attribute,
# and passed to another module for
# authentication. This allows the EAP-GTC
# response to be checked against plain-text,
# or crypt'd passwords.
#
# If you say "Local" instead of "PAP", then
# the module will look for a User-Password
# configured for the request, and do the
# authentication itself.
#
auth_type = PAP
}
## Common TLS configuration for TLS-based EAP types
#
# See raddb/certs/README for additional comments
# on certificates.
#
# If OpenSSL was not found at the time the server was
# built, the "tls", "ttls", and "peap" sections will
# be ignored.
#
# If you do not currently have certificates signed by
# a trusted CA you may use the 'snakeoil' certificates.
# Included with the server in raddb/certs.
#
# If these certificates have not been auto-generated:
# cd raddb/certs
# make
#
# These test certificates SHOULD NOT be used in a normal
# deployment. They are created only to make it easier
# to install the server, and to perform some simple
# tests with EAP-TLS, TTLS, or PEAP.
#
# See also:
#
# http://www.dslreports.com/forum/remark,9286052~mode=flat
#
# Note that you should NOT use a globally known CA here!
# e.g. using a Verisign cert as a "known CA" means that
# ANYONE who has a certificate signed by them can
# authenticate via EAP-TLS! This is likely not what you want.
tls-config tls-common {
private_key_password = whatever
private_key_file = /etc/ssl/private/ssl-cert-snakeoil.key
# If Private key & Certificate are located in
# the same file, then private_key_file &
# certificate_file must contain the same file
# name.
#
# If ca_file (below) is not used, then the
# certificate_file below MUST include not
# only the server certificate, but ALSO all
# of the CA certificates used to sign the
# server certificate.
certificate_file = /etc/ssl/certs/ssl-cert-snakeoil.pem
# Trusted Root CA list
#
# ALL of the CA's in this list will be trusted
# to issue client certificates for authentication.
#
# In general, you should use self-signed
# certificates for 802.1x (EAP) authentication.
# In that case, this CA file should contain
# *one* CA certificate.
#
ca_file = /etc/ssl/certs/ca-certificates.crt
# OpenSSL will automatically create certificate chains,
# unless we tell it to not do that. The problem is that
# it sometimes gets the chains right from a certificate
# signature view, but wrong from the clients view.
#
# When setting "auto_chain = no", the server certificate
# file MUST include the full certificate chain.
# auto_chain = yes
#
# If OpenSSL supports TLS-PSK, then we can use
# a PSK identity and (hex) password. When the
# following two configuration items are specified,
# then certificate-based configuration items are
# not allowed. e.g.:
#
# private_key_password
# private_key_file
# certificate_file
# ca_file
# ca_path
#
# For now, the identity is fixed, and must be the
# same on the client. The passphrase must be a hex
# value, and can be up to 256 hex digits.
#
# Future versions of the server may be able to
# look up the shared key (hexphrase) based on the
# identity.
#
# psk_identity = "test"
# psk_hexphrase = "036363823"
#
# For DH cipher suites to work, you have to
# run OpenSSL to create the DH file first:
#
# openssl dhparam -out certs/dh 2048
#
dh_file = ${certdir}/dh
#
# If your system doesn't have /dev/urandom,
# you will need to create this file, and
# periodically change its contents.
#
# For security reasons, FreeRADIUS doesn't
# write to files in its configuration
# directory.
#
# random_file = /dev/urandom
#
# This can never exceed the size of a RADIUS
# packet (4096 bytes), and is preferably half
# that, to accommodate other attributes in
# RADIUS packet. On most APs the MAX packet
# length is configured between 1500 - 1600
# In these cases, fragment size should be
# 1024 or less.
#
# fragment_size = 1024
# include_length is a flag which is
# by default set to yes If set to
# yes, Total Length of the message is
# included in EVERY packet we send.
# If set to no, Total Length of the
# message is included ONLY in the
# First packet of a fragment series.
#
# include_length = yes
# Check the Certificate Revocation List
#
# 1) Copy CA certificates and CRLs to same directory.
# 2) Execute 'c_rehash <CA certs&CRLs Directory>'.
# 'c_rehash' is OpenSSL's command.
# 3) uncomment the lines below.
# 5) Restart radiusd
# check_crl = yes
# Check if intermediate CAs have been revoked.
# check_all_crl = yes
ca_path = ${cadir}
# Accept an expired Certificate Revocation List
#
# allow_expired_crl = no
#
# If check_cert_issuer is set, the value will
# be checked against the DN of the issuer in
# the client certificate. If the values do not
# match, the certificate verification will fail,
# rejecting the user.
#
# This check can be done more generally by checking
# the value of the TLS-Client-Cert-Issuer attribute.
# This check can be done via any mechanism you
# choose.
#
# check_cert_issuer = "/C=GB/ST=Berkshire/L=Newbury/O=My Company Ltd"
#
# If check_cert_cn is set, the value will
# be xlat'ed and checked against the CN
# in the client certificate. If the values
# do not match, the certificate verification
# will fail rejecting the user.
#
# This check is done only if the previous
# "check_cert_issuer" is not set, or if
# the check succeeds.
#
# In 2.1.10 and later, this check can be done
# more generally by checking the value of the
# TLS-Client-Cert-CN attribute. This check
# can be done via any mechanism you choose.
#
# check_cert_cn = %{User-Name}
#
# Set this option to specify the allowed
# TLS cipher suites. The format is listed
# in "man 1 ciphers".
#
# For EAP-FAST, use "ALL:!EXPORT:!eNULL:!SSLv2"
#
cipher_list = "DEFAULT"
# If enabled, OpenSSL will use server cipher list
# (possibly defined by cipher_list option above)
# for choosing right cipher suite rather than
# using client-specified list which is OpenSSl default
# behavior. Having it set to yes is a current best practice
# for TLS
cipher_server_preference = no
#
# You can selectively disable TLS versions for
# compatability with old client devices.
#
# If your system has OpenSSL 1.1.0 or greater, do NOT
# use these. Instead, set tls_min_version and
# tls_max_version.
#
# disable_tlsv1_2 = no
# disable_tlsv1_1 = no
# disable_tlsv1 = no
#
# Set min / max TLS version. Mainly for Debian
# "trusty", which disables older versions of TLS, and
# requires the application to manually enable them.
#
# If you are running Debian trusty, you should set
# these options, otherwise older clients will not be
# able to connect.
#
# Allowed values are "1.0", "1.1", and "1.2".
#
# The values must be in quotes.
#
tls_min_version = "1.0"
tls_max_version = "1.2"
#
# Elliptical cryptography configuration
#
# Only for OpenSSL >= 0.9.8.f
#
ecdh_curve = "prime256v1"
#
# Session resumption / fast reauthentication
# cache.
#
# The cache contains the following information:
#
# session Id - unique identifier, managed by SSL
# User-Name - from the Access-Accept
# Stripped-User-Name - from the Access-Request
# Cached-Session-Policy - from the Access-Accept
#
# The "Cached-Session-Policy" is the name of a
# policy which should be applied to the cached
# session. This policy can be used to assign
# VLANs, IP addresses, etc. It serves as a useful
# way to re-apply the policy from the original
# Access-Accept to the subsequent Access-Accept
# for the cached session.
#
# On session resumption, these attributes are
# copied from the cache, and placed into the
# reply list.
#
# You probably also want "use_tunneled_reply = yes"
# when using fast session resumption.
#
cache {
#
# Enable it. The default is "no". Deleting the entire "cache"
# subsection also disables caching.
#
# As of version 3.0.14, the session cache requires the use
# of the "name" and "persist_dir" configuration items, below.
#
# The internal OpenSSL session cache has been permanently
# disabled.
#
# You can disallow resumption for a particular user by adding the
# following attribute to the control item list:
#
# Allow-Session-Resumption = No
#
# If "enable = no" below, you CANNOT enable resumption for just one
# user by setting the above attribute to "yes".
#
enable = yes
#
# Lifetime of the cached entries, in hours. The sessions will be
# deleted/invalidated after this time.
#
lifetime = 1 # hours
#
# Internal "name" of the session cache. Used to
# distinguish which TLS context sessions belong to.
#
# The server will generate a random value if unset.
# This will change across server restart so you MUST
# set the "name" if you want to persist sessions (see
# below).
#
#name = "EAP module"
#
# Simple directory-based storage of sessions.
# Two files per session will be written, the SSL
# state and the cached VPs. This will persist session
# across server restarts.
#
# The default directory is ${logdir}, for historical
# reasons. You should ${db_dir} instead. And check
# the value of db_dir in the main radiusd.conf file.
# It should not point to ${raddb}
#
# The server will need write perms, and the directory
# should be secured from anyone else. You might want
# a script to remove old files from here periodically:
#
# find ${logdir}/tlscache -mtime +2 -exec rm -f {} \;
#
# This feature REQUIRES "name" option be set above.
#
#persist_dir = "${logdir}/tlscache"
}
#
# As of version 2.1.10, client certificates can be
# validated via an external command. This allows
# dynamic CRLs or OCSP to be used.
#
# This configuration is commented out in the
# default configuration. Uncomment it, and configure
# the correct paths below to enable it.
#
# If OCSP checking is enabled, and the OCSP checks fail,
# the verify section is not run.
#
# If OCSP checking is disabled, the verify section is
# run on successful certificate validation.
#
verify {
# If the OCSP checks succeed, the verify section
# is run to allow additional checks.
#
# If you want to skip verify on OCSP success,
# uncomment this configuration item, and set it
# to "yes".
# skip_if_ocsp_ok = no
# A temporary directory where the client
# certificates are stored. This directory
# MUST be owned by the UID of the server,
# and MUST not be accessible by any other
# users. When the server starts, it will do
# "chmod go-rwx" on the directory, for
# security reasons. The directory MUST
# exist when the server starts.
#
# You should also delete all of the files
# in the directory when the server starts.
# tmpdir = /tmp/radiusd
# The command used to verify the client cert.
# We recommend using the OpenSSL command-line
# tool.
#
# The ${..ca_path} text is a reference to
# the ca_path variable defined above.
#
# The %{TLS-Client-Cert-Filename} is the name
# of the temporary file containing the cert
# in PEM format. This file is automatically
# deleted by the server when the command
# returns.
# client = "/path/to/openssl verify -CApath ${..ca_path} %{TLS-Client-Cert-Filename}"
}
#
# OCSP Configuration
# Certificates can be verified against an OCSP
# Responder. This makes it possible to immediately
# revoke certificates without the distribution of
# new Certificate Revocation Lists (CRLs).
#
ocsp {
#
# Enable it. The default is "no".
# Deleting the entire "ocsp" subsection
# also disables ocsp checking
#
enable = no
#
# The OCSP Responder URL can be automatically
# extracted from the certificate in question.
# To override the OCSP Responder URL set
# "override_cert_url = yes".
#
override_cert_url = yes
#
# If the OCSP Responder address is not extracted from
# the certificate, the URL can be defined here.
#
url = "http://127.0.0.1/ocsp/"
#
# If the OCSP Responder can not cope with nonce
# in the request, then it can be disabled here.
#
# For security reasons, disabling this option
# is not recommended as nonce protects against
# replay attacks.
#
# Note that Microsoft AD Certificate Services OCSP
# Responder does not enable nonce by default. It is
# more secure to enable nonce on the responder than
# to disable it in the query here.
# See http://technet.microsoft.com/en-us/library/cc770413%28WS.10%29.aspx
#
# use_nonce = yes
#
# Number of seconds before giving up waiting
# for OCSP response. 0 uses system default.
#
# timeout = 0
#
# Normally an error in querying the OCSP
# responder (no response from server, server did
# not understand the request, etc) will result in
# a validation failure.
#
# To treat these errors as 'soft' failures and
# still accept the certificate, enable this
# option.
#
# Warning: this may enable clients with revoked
# certificates to connect if the OCSP responder
# is not available. Use with caution.
#
# softfail = no
}
}
## EAP-TLS
#
# As of Version 3.0, the TLS configuration for TLS-based
# EAP types is above in the "tls-config" section.
#
tls {
# Point to the common TLS configuration
tls = tls-common
#
# As part of checking a client certificate, the EAP-TLS
# sets some attributes such as TLS-Client-Cert-CN. This
# virtual server has access to these attributes, and can
# be used to accept or reject the request.
#
# virtual_server = check-eap-tls
}
## EAP-TTLS
#
# The TTLS module implements the EAP-TTLS protocol,
# which can be described as EAP inside of Diameter,
# inside of TLS, inside of EAP, inside of RADIUS...
#
# Surprisingly, it works quite well.
#
ttls {
# Which tls-config section the TLS negotiation parameters
# are in - see EAP-TLS above for an explanation.
#
# In the case that an old configuration from FreeRADIUS
# v2.x is being used, all the options of the tls-config
# section may also appear instead in the 'tls' section
# above. If that is done, the tls= option here (and in
# tls above) MUST be commented out.
#
tls = tls-common
# The tunneled EAP session needs a default EAP type
# which is separate from the one for the non-tunneled
# EAP module. Inside of the TTLS tunnel, we recommend
# using EAP-MD5. If the request does not contain an
# EAP conversation, then this configuration entry is
# ignored.
#
default_eap_type = md5
# The tunneled authentication request does not usually
# contain useful attributes like 'Calling-Station-Id',
# etc. These attributes are outside of the tunnel,
# and normally unavailable to the tunneled
# authentication request.
#
# By setting this configuration entry to 'yes',
# any attribute which is NOT in the tunneled
# authentication request, but which IS available
# outside of the tunnel, is copied to the tunneled
# request.
#
# allowed values: {no, yes}
#
copy_request_to_tunnel = yes
#
# As of version 3.0.5, this configuration item
# is deprecated. Instead, you should use
#
# update outer.session-state {
# ...
#
# }
#
# This will cache attributes for the final Access-Accept.
#
# The reply attributes sent to the NAS are usually
# based on the name of the user 'outside' of the
# tunnel (usually 'anonymous'). If you want to send
# the reply attributes based on the user name inside
# of the tunnel, then set this configuration entry to
# 'yes', and the reply to the NAS will be taken from
# the reply to the tunneled request.
#
# allowed values: {no, yes}
#
use_tunneled_reply = no
#
# The inner tunneled request can be sent
# through a virtual server constructed
# specifically for this purpose.
#
# If this entry is commented out, the inner
# tunneled request will be sent through
# the virtual server that processed the
# outer requests.
#
virtual_server = "inner-tunnel"
# This has the same meaning, and overwrites, the
# same field in the "tls" configuration, above.
# The default value here is "yes".
#
# include_length = yes
#
# Unlike EAP-TLS, EAP-TTLS does not require a client
# certificate. However, you can require one by setting the
# following option. You can also override this option by
# setting
#
# EAP-TLS-Require-Client-Cert = Yes
#
# in the control items for a request.
#
# Note that the majority of supplicants do not support using a
# client certificate with EAP-TTLS, so this option is unlikely
# to be usable for most people.
#
# require_client_cert = yes
}
## EAP-PEAP
#
##################################################
#
# !!!!! WARNINGS for Windows compatibility !!!!!
#
##################################################
#
# If you see the server send an Access-Challenge,
# and the client never sends another Access-Request,
# then
#
# STOP!
#
# The server certificate has to have special OID's
# in it, or else the Microsoft clients will silently
# fail. See the "scripts/xpextensions" file for
# details, and the following page:
#
# http://support.microsoft.com/kb/814394/en-us
#
# For additional Windows XP SP2 issues, see:
#
# http://support.microsoft.com/kb/885453/en-us
#
#
# If is still doesn't work, and you're using Samba,
# you may be encountering a Samba bug. See:
#
# https://bugzilla.samba.org/show_bug.cgi?id=6563
#
# Note that we do not necessarily agree with their
# explanation... but the fix does appear to work.
#
##################################################
#
# The tunneled EAP session needs a default EAP type
# which is separate from the one for the non-tunneled
# EAP module. Inside of the TLS/PEAP tunnel, we
# recommend using EAP-MS-CHAPv2.
#
peap {
# Which tls-config section the TLS negotiation parameters
# are in - see EAP-TLS above for an explanation.
#
# In the case that an old configuration from FreeRADIUS
# v2.x is being used, all the options of the tls-config
# section may also appear instead in the 'tls' section
# above. If that is done, the tls= option here (and in
# tls above) MUST be commented out.
#
tls = tls-common
# The tunneled EAP session needs a default
# EAP type which is separate from the one for
# the non-tunneled EAP module. Inside of the
# PEAP tunnel, we recommend using MS-CHAPv2,
# as that is the default type supported by
# Windows clients.
#
default_eap_type = mschapv2
# The PEAP module also has these configuration
# items, which are the same as for TTLS.
#
copy_request_to_tunnel = yes
#
# As of version 3.0.5, this configuration item
# is deprecated. Instead, you should use
#
# update outer.session-state {
# ...
#
# }
#
# This will cache attributes for the final Access-Accept.
#
use_tunneled_reply = no
# When the tunneled session is proxied, the
# home server may not understand EAP-MSCHAP-V2.
# Set this entry to "no" to proxy the tunneled
# EAP-MSCHAP-V2 as normal MSCHAPv2.
#
# proxy_tunneled_request_as_eap = yes
#
# The inner tunneled request can be sent
# through a virtual server constructed
# specifically for this purpose.
#
# If this entry is commented out, the inner
# tunneled request will be sent through
# the virtual server that processed the
# outer requests.
#
virtual_server = "inner-tunnel"
# This option enables support for MS-SoH
# see doc/SoH.txt for more info.
# It is disabled by default.
#
# soh = yes
#
# The SoH reply will be turned into a request which
# can be sent to a specific virtual server:
#
# soh_virtual_server = "soh-server"
#
# Unlike EAP-TLS, PEAP does not require a client certificate.
# However, you can require one by setting the following
# option. You can also override this option by setting
#
# EAP-TLS-Require-Client-Cert = Yes
#
# in the control items for a request.
#
# Note that the majority of supplicants do not support using a
# client certificate with PEAP, so this option is unlikely to
# be usable for most people.
#
# require_client_cert = yes
}
#
# This takes no configuration.
#
# Note that it is the EAP MS-CHAPv2 sub-module, not
# the main 'mschap' module.
#
# Note also that in order for this sub-module to work,
# the main 'mschap' module MUST ALSO be configured.
#
# This module is the *Microsoft* implementation of MS-CHAPv2
# in EAP. There is another (incompatible) implementation
# of MS-CHAPv2 in EAP by Cisco, which FreeRADIUS does not
# currently support.
#
mschapv2 {
# Prior to version 2.1.11, the module never
# sent the MS-CHAP-Error message to the
# client. This worked, but it had issues
# when the cached password was wrong. The
# server *should* send "E=691 R=0" to the
# client, which tells it to prompt the user
# for a new password.
#
# The default is to behave as in 2.1.10 and
# earlier, which is known to work. If you
# set "send_error = yes", then the error
# message will be sent back to the client.
# This *may* help some clients work better,
# but *may* also cause other clients to stop
# working.
#
# send_error = no
# Server identifier to send back in the challenge.
# This should generally be the host name of the
# RADIUS server. Or, some information to uniquely
# identify it.
# identity = "FreeRADIUS"
}
## EAP-FAST
#
# The FAST module implements the EAP-FAST protocol
#
# fast {
# Point to the common TLS configuration
#
# tls = tls-common
#
# If 'cipher_list' is set here, it will over-ride the
# 'cipher_list' configuration from the 'tls-common'
# configuration. The EAP-FAST module has it's own
# over-ride for 'cipher_list' because the
# specifications mandata a different set of ciphers
# than are used by the other EAP methods.
#
# cipher_list though must include "ADH" for anonymous provisioning.
# This is not as straight forward as appending "ADH" alongside
# "DEFAULT" as "DEFAULT" contains "!aNULL" so instead it is
# recommended "ALL:!EXPORT:!eNULL:!SSLv2" is used
#
# Note - for OpenSSL 1.1.0 and above you may need
# to add ":@SECLEVEL=0"
#
# cipher_list = "ALL:!EXPORT:!eNULL:!SSLv2"
# PAC lifetime in seconds (default: seven days)
#
# pac_lifetime = 604800
# Authority ID of the server
#
# if you are running a cluster of RADIUS servers, you should make
# the value chosen here (and for "pac_opaque_key") the same on all
# your RADIUS servers. This value should be unique to your
# installation. We suggest using a domain name.
#
# authority_identity = "1234"
# PAC Opaque encryption key (must be exactly 32 bytes in size)
#
# This value MUST be secret, and MUST be generated using
# a secure method, such as via 'openssl rand -hex 32'
#
# pac_opaque_key = "0123456789abcdef0123456789ABCDEF"
# Same as for TTLS, PEAP, etc.
#
# virtual_server = inner-tunnel
# }
}

View file

@ -0,0 +1,22 @@
#
# Make sure the PYTHONPATH environmental variable contains the
# directory(s) for the modules listed below.
#
# Uncomment any func_* which are included in your module. If
# rlm_python is called for a section which does not have
# a function defined, it will return NOOP.
#
python3 re2o {
module = auth
python_path = /etc/freeradius/3.0:/usr/lib/python3.7:/usr/lib/python3.7/dist-packages:/usr/local/lib/python3.7/site-packages:/usr/lib/python3.7/lib-dynload:/usr/local/lib/python3.7/dist-packages
mod_instantiate = ${.module}
func_instantiate = instantiate
mod_authorize = ${.module}
func_authorize = authorize
mod_post_auth = ${.module}
func_post_auth = post_auth
}

818
freeradius3/radiusd.conf Normal file
View file

@ -0,0 +1,818 @@
# -*- text -*-
##
## radiusd.conf -- FreeRADIUS server configuration file - 3.0.12
##
## http://www.freeradius.org/
## $Id: c62f4ffed53a073a885f243b728129f5c482fad7 $
##
######################################################################
#
# Read "man radiusd" before editing this file. See the section
# titled DEBUGGING. It outlines a method where you can quickly
# obtain the configuration you want, without running into
# trouble.
#
# Run the server in debugging mode, and READ the output.
#
# $ radiusd -X
#
# We cannot emphasize this point strongly enough. The vast
# majority of problems can be solved by carefully reading the
# debugging output, which includes warnings about common issues,
# and suggestions for how they may be fixed.
#
# There may be a lot of output, but look carefully for words like:
# "warning", "error", "reject", or "failure". The messages there
# will usually be enough to guide you to a solution.
#
# If you are going to ask a question on the mailing list, then
# explain what you are trying to do, and include the output from
# debugging mode (radiusd -X). Failure to do so means that all
# of the responses to your question will be people telling you
# to "post the output of radiusd -X".
######################################################################
#
# The location of other config files and logfiles are declared
# in this file.
#
# Also general configuration for modules can be done in this
# file, it is exported through the API to modules that ask for
# it.
#
# See "man radiusd.conf" for documentation on the format of this
# file. Note that the individual configuration items are NOT
# documented in that "man" page. They are only documented here,
# in the comments.
#
# The "unlang" policy language can be used to create complex
# if / else policies. See "man unlang" for details.
#
prefix = /usr
exec_prefix = /usr
sysconfdir = /etc
localstatedir = /var
sbindir = ${exec_prefix}/sbin
logdir = /var/log/freeradius
raddbdir = /etc/freeradius/3.0
radacctdir = ${logdir}/radacct
#
# name of the running server. See also the "-n" command-line option.
name = freeradius
# Location of config and logfiles.
confdir = ${raddbdir}
modconfdir = ${confdir}/mods-config
certdir = ${confdir}/certs
cadir = ${confdir}/certs
run_dir = ${localstatedir}/run/${name}
# Should likely be ${localstatedir}/lib/radiusd
db_dir = ${raddbdir}
#
# libdir: Where to find the rlm_* modules.
#
# This should be automatically set at configuration time.
#
# If the server builds and installs, but fails at execution time
# with an 'undefined symbol' error, then you can use the libdir
# directive to work around the problem.
#
# The cause is usually that a library has been installed on your
# system in a place where the dynamic linker CANNOT find it. When
# executing as root (or another user), your personal environment MAY
# be set up to allow the dynamic linker to find the library. When
# executing as a daemon, FreeRADIUS MAY NOT have the same
# personalized configuration.
#
# To work around the problem, find out which library contains that symbol,
# and add the directory containing that library to the end of 'libdir',
# with a colon separating the directory names. NO spaces are allowed.
#
# e.g. libdir = /usr/local/lib:/opt/package/lib
#
# You can also try setting the LD_LIBRARY_PATH environment variable
# in a script which starts the server.
#
# If that does not work, then you can re-configure and re-build the
# server to NOT use shared libraries, via:
#
# ./configure --disable-shared
# make
# make install
#
libdir = /usr/lib/freeradius
# pidfile: Where to place the PID of the RADIUS server.
#
# The server may be signalled while it's running by using this
# file.
#
# This file is written when ONLY running in daemon mode.
#
# e.g.: kill -HUP `cat /var/run/radiusd/radiusd.pid`
#
pidfile = ${run_dir}/${name}.pid
#
# correct_escapes: use correct backslash escaping
#
# Prior to version 3.0.5, the handling of backslashes was a little
# awkward, i.e. "wrong". In some cases, to get one backslash into
# a regex, you had to put 4 in the config files.
#
# Version 3.0.5 fixes that. However, for backwards compatibility,
# the new method of escaping is DISABLED BY DEFAULT. This means
# that upgrading to 3.0.5 won't break your configuration.
#
# If you don't have double backslashes (i.e. \\) in your configuration,
# this won't matter to you. If you do have them, fix that to use only
# one backslash, and then set "correct_escapes = true".
#
# You can check for this by doing:
#
# $ grep '\\\\' $(find raddb -type f -print)
#
correct_escapes = true
# panic_action: Command to execute if the server dies unexpectedly.
#
# FOR PRODUCTION SYSTEMS, ACTIONS SHOULD ALWAYS EXIT.
# AN INTERACTIVE ACTION MEANS THE SERVER IS NOT RESPONDING TO REQUESTS.
# AN INTERACTICE ACTION MEANS THE SERVER WILL NOT RESTART.
#
# THE SERVER MUST NOT BE ALLOWED EXECUTE UNTRUSTED PANIC ACTION CODE
# PATTACH CAN BE USED AS AN ATTACK VECTOR.
#
# The panic action is a command which will be executed if the server
# receives a fatal, non user generated signal, i.e. SIGSEGV, SIGBUS,
# SIGABRT or SIGFPE.
#
# This can be used to start an interactive debugging session so
# that information regarding the current state of the server can
# be acquired.
#
# The following string substitutions are available:
# - %e The currently executing program e.g. /sbin/radiusd
# - %p The PID of the currently executing program e.g. 12345
#
# Standard ${} substitutions are also allowed.
#
# An example panic action for opening an interactive session in GDB would be:
#
#panic_action = "gdb %e %p"
#
# Again, don't use that on a production system.
#
# An example panic action for opening an automated session in GDB would be:
#
#panic_action = "gdb -silent -x ${raddbdir}/panic.gdb %e %p 2>&1 | tee ${logdir}/gdb-${name}-%p.log"
#
# That command can be used on a production system.
#
# max_request_time: The maximum time (in seconds) to handle a request.
#
# Requests which take more time than this to process may be killed, and
# a REJECT message is returned.
#
# WARNING: If you notice that requests take a long time to be handled,
# then this MAY INDICATE a bug in the server, in one of the modules
# used to handle a request, OR in your local configuration.
#
# This problem is most often seen when using an SQL database. If it takes
# more than a second or two to receive an answer from the SQL database,
# then it probably means that you haven't indexed the database. See your
# SQL server documentation for more information.
#
# Useful range of values: 5 to 120
#
max_request_time = 30
# cleanup_delay: The time to wait (in seconds) before cleaning up
# a reply which was sent to the NAS.
#
# The RADIUS request is normally cached internally for a short period
# of time, after the reply is sent to the NAS. The reply packet may be
# lost in the network, and the NAS will not see it. The NAS will then
# re-send the request, and the server will respond quickly with the
# cached reply.
#
# If this value is set too low, then duplicate requests from the NAS
# MAY NOT be detected, and will instead be handled as separate requests.
#
# If this value is set too high, then the server will cache too many
# requests, and some new requests may get blocked. (See 'max_requests'.)
#
# Useful range of values: 2 to 10
#
cleanup_delay = 5
# max_requests: The maximum number of requests which the server keeps
# track of. This should be 256 multiplied by the number of clients.
# e.g. With 4 clients, this number should be 1024.
#
# If this number is too low, then when the server becomes busy,
# it will not respond to any new requests, until the 'cleanup_delay'
# time has passed, and it has removed the old requests.
#
# If this number is set too high, then the server will use a bit more
# memory for no real benefit.
#
# If you aren't sure what it should be set to, it's better to set it
# too high than too low. Setting it to 1000 per client is probably
# the highest it should be.
#
# Useful range of values: 256 to infinity
#
max_requests = 16384
# hostname_lookups: Log the names of clients or just their IP addresses
# e.g., www.freeradius.org (on) or 206.47.27.232 (off).
#
# The default is 'off' because it would be overall better for the net
# if people had to knowingly turn this feature on, since enabling it
# means that each client request will result in AT LEAST one lookup
# request to the nameserver. Enabling hostname_lookups will also
# mean that your server may stop randomly for 30 seconds from time
# to time, if the DNS requests take too long.
#
# Turning hostname lookups off also means that the server won't block
# for 30 seconds, if it sees an IP address which has no name associated
# with it.
#
# allowed values: {no, yes}
#
hostname_lookups = no
#
# Logging section. The various "log_*" configuration items
# will eventually be moved here.
#
log {
#
# Destination for log messages. This can be one of:
#
# files - log to "file", as defined below.
# syslog - to syslog (see also the "syslog_facility", below.
# stdout - standard output
# stderr - standard error.
#
# The command-line option "-X" over-rides this option, and forces
# logging to go to stdout.
#
destination = files
#
# Highlight important messages sent to stderr and stdout.
#
# Option will be ignored (disabled) if output if TERM is not
# an xterm or output is not to a TTY.
#
colourise = yes
#
# The logging messages for the server are appended to the
# tail of this file if destination == "files"
#
# If the server is running in debugging mode, this file is
# NOT used.
#
file = ${logdir}/radius.log
#
# If this configuration parameter is set, then log messages for
# a *request* go to this file, rather than to radius.log.
#
# i.e. This is a log file per request, once the server has accepted
# the request as being from a valid client. Messages that are
# not associated with a request still go to radius.log.
#
# Not all log messages in the server core have been updated to use
# this new internal API. As a result, some messages will still
# go to radius.log. Please submit patches to fix this behavior.
#
# The file name is expanded dynamically. You should ONLY user
# server-side attributes for the filename (e.g. things you control).
# Using this feature MAY also slow down the server substantially,
# especially if you do thinks like SQL calls as part of the
# expansion of the filename.
#
# The name of the log file should use attributes that don't change
# over the lifetime of a request, such as User-Name,
# Virtual-Server or Packet-Src-IP-Address. Otherwise, the log
# messages will be distributed over multiple files.
#
# Logging can be enabled for an individual request by a special
# dynamic expansion macro: %{debug: 1}, where the debug level
# for this request is set to '1' (or 2, 3, etc.). e.g.
#
# ...
# update control {
# Tmp-String-0 = "%{debug:1}"
# }
# ...
#
# The attribute that the value is assigned to is unimportant,
# and should be a "throw-away" attribute with no side effects.
#
#requests = ${logdir}/radiusd-%{%{Virtual-Server}:-DEFAULT}-%Y%m%d.log
#
# Which syslog facility to use, if ${destination} == "syslog"
#
# The exact values permitted here are OS-dependent. You probably
# don't want to change this.
#
syslog_facility = daemon
# Log the full User-Name attribute, as it was found in the request.
#
# allowed values: {no, yes}
#
stripped_names = no
# Log authentication requests to the log file.
#
# allowed values: {no, yes}
#
auth = yes
# Log passwords with the authentication requests.
# auth_badpass - logs password if it's rejected
# auth_goodpass - logs password if it's correct
#
# allowed values: {no, yes}
#
auth_badpass = no
auth_goodpass = no
# Log additional text at the end of the "Login OK" messages.
# for these to work, the "auth" and "auth_goodpass" or "auth_badpass"
# configurations above have to be set to "yes".
#
# The strings below are dynamically expanded, which means that
# you can put anything you want in them. However, note that
# this expansion can be slow, and can negatively impact server
# performance.
#
# msg_goodpass = ""
# msg_badpass = ""
# The message when the user exceeds the Simultaneous-Use limit.
#
msg_denied = "You are already logged in - access denied"
}
# The program to execute to do concurrency checks.
checkrad = ${sbindir}/checkrad
# SECURITY CONFIGURATION
#
# There may be multiple methods of attacking on the server. This
# section holds the configuration items which minimize the impact
# of those attacks
#
security {
# chroot: directory where the server does "chroot".
#
# The chroot is done very early in the process of starting
# the server. After the chroot has been performed it
# switches to the "user" listed below (which MUST be
# specified). If "group" is specified, it switches to that
# group, too. Any other groups listed for the specified
# "user" in "/etc/group" are also added as part of this
# process.
#
# The current working directory (chdir / cd) is left
# *outside* of the chroot until all of the modules have been
# initialized. This allows the "raddb" directory to be left
# outside of the chroot. Once the modules have been
# initialized, it does a "chdir" to ${logdir}. This means
# that it should be impossible to break out of the chroot.
#
# If you are worried about security issues related to this
# use of chdir, then simply ensure that the "raddb" directory
# is inside of the chroot, end be sure to do "cd raddb"
# BEFORE starting the server.
#
# If the server is statically linked, then the only files
# that have to exist in the chroot are ${run_dir} and
# ${logdir}. If you do the "cd raddb" as discussed above,
# then the "raddb" directory has to be inside of the chroot
# directory, too.
#
# chroot = /path/to/chroot/directory
# user/group: The name (or #number) of the user/group to run radiusd as.
#
# If these are commented out, the server will run as the
# user/group that started it. In order to change to a
# different user/group, you MUST be root ( or have root
# privileges ) to start the server.
#
# We STRONGLY recommend that you run the server with as few
# permissions as possible. That is, if you're not using
# shadow passwords, the user and group items below should be
# set to radius'.
#
# NOTE that some kernels refuse to setgid(group) when the
# value of (unsigned)group is above 60000; don't use group
# "nobody" on these systems!
#
# On systems with shadow passwords, you might have to set
# 'group = shadow' for the server to be able to read the
# shadow password file. If you can authenticate users while
# in debug mode, but not in daemon mode, it may be that the
# debugging mode server is running as a user that can read
# the shadow info, and the user listed below can not.
#
# The server will also try to use "initgroups" to read
# /etc/groups. It will join all groups where "user" is a
# member. This can allow for some finer-grained access
# controls.
#
user = freerad
group = freerad
# Core dumps are a bad thing. This should only be set to
# 'yes' if you're debugging a problem with the server.
#
# allowed values: {no, yes}
#
allow_core_dumps = no
#
# max_attributes: The maximum number of attributes
# permitted in a RADIUS packet. Packets which have MORE
# than this number of attributes in them will be dropped.
#
# If this number is set too low, then no RADIUS packets
# will be accepted.
#
# If this number is set too high, then an attacker may be
# able to send a small number of packets which will cause
# the server to use all available memory on the machine.
#
# Setting this number to 0 means "allow any number of attributes"
max_attributes = 200
#
# reject_delay: When sending an Access-Reject, it can be
# delayed for a few seconds. This may help slow down a DoS
# attack. It also helps to slow down people trying to brute-force
# crack a users password.
#
# Setting this number to 0 means "send rejects immediately"
#
# If this number is set higher than 'cleanup_delay', then the
# rejects will be sent at 'cleanup_delay' time, when the request
# is deleted from the internal cache of requests.
#
# As of Version 3.0.5, "reject_delay" has sub-second resolution.
# e.g. "reject_delay = 1.4" seconds is possible.
#
# Useful ranges: 1 to 5
reject_delay = 1
#
# status_server: Whether or not the server will respond
# to Status-Server requests.
#
# When sent a Status-Server message, the server responds with
# an Access-Accept or Accounting-Response packet.
#
# This is mainly useful for administrators who want to "ping"
# the server, without adding test users, or creating fake
# accounting packets.
#
# It's also useful when a NAS marks a RADIUS server "dead".
# The NAS can periodically "ping" the server with a Status-Server
# packet. If the server responds, it must be alive, and the
# NAS can start using it for real requests.
#
# See also raddb/sites-available/status
#
status_server = yes
}
# PROXY CONFIGURATION
#
# proxy_requests: Turns proxying of RADIUS requests on or off.
#
# The server has proxying turned on by default. If your system is NOT
# set up to proxy requests to another server, then you can turn proxying
# off here. This will save a small amount of resources on the server.
#
# If you have proxying turned off, and your configuration files say
# to proxy a request, then an error message will be logged.
#
# To disable proxying, change the "yes" to "no", and comment the
# $INCLUDE line.
#
# allowed values: {no, yes}
#
proxy_requests = yes
$INCLUDE proxy.conf
# CLIENTS CONFIGURATION
#
# Client configuration is defined in "clients.conf".
#
# The 'clients.conf' file contains all of the information from the old
# 'clients' and 'naslist' configuration files. We recommend that you
# do NOT use 'client's or 'naslist', although they are still
# supported.
#
# Anything listed in 'clients.conf' will take precedence over the
# information from the old-style configuration files.
#
$INCLUDE clients.conf
# THREAD POOL CONFIGURATION
#
# The thread pool is a long-lived group of threads which
# take turns (round-robin) handling any incoming requests.
#
# You probably want to have a few spare threads around,
# so that high-load situations can be handled immediately. If you
# don't have any spare threads, then the request handling will
# be delayed while a new thread is created, and added to the pool.
#
# You probably don't want too many spare threads around,
# otherwise they'll be sitting there taking up resources, and
# not doing anything productive.
#
# The numbers given below should be adequate for most situations.
#
thread pool {
# Number of servers to start initially --- should be a reasonable
# ballpark figure.
start_servers = 5
# Limit on the total number of servers running.
#
# If this limit is ever reached, clients will be LOCKED OUT, so it
# should NOT BE SET TOO LOW. It is intended mainly as a brake to
# keep a runaway server from taking the system with it as it spirals
# down...
#
# You may find that the server is regularly reaching the
# 'max_servers' number of threads, and that increasing
# 'max_servers' doesn't seem to make much difference.
#
# If this is the case, then the problem is MOST LIKELY that
# your back-end databases are taking too long to respond, and
# are preventing the server from responding in a timely manner.
#
# The solution is NOT do keep increasing the 'max_servers'
# value, but instead to fix the underlying cause of the
# problem: slow database, or 'hostname_lookups=yes'.
#
# For more information, see 'max_request_time', above.
#
max_servers = 32
# Server-pool size regulation. Rather than making you guess
# how many servers you need, FreeRADIUS dynamically adapts to
# the load it sees, that is, it tries to maintain enough
# servers to handle the current load, plus a few spare
# servers to handle transient load spikes.
#
# It does this by periodically checking how many servers are
# waiting for a request. If there are fewer than
# min_spare_servers, it creates a new spare. If there are
# more than max_spare_servers, some of the spares die off.
# The default values are probably OK for most sites.
#
min_spare_servers = 3
max_spare_servers = 10
# When the server receives a packet, it places it onto an
# internal queue, where the worker threads (configured above)
# pick it up for processing. The maximum size of that queue
# is given here.
#
# When the queue is full, any new packets will be silently
# discarded.
#
# The most common cause of the queue being full is that the
# server is dependent on a slow database, and it has received
# a large "spike" of traffic. When that happens, there is
# very little you can do other than make sure the server
# receives less traffic, or make sure that the database can
# handle the load.
#
# max_queue_size = 65536
# There may be memory leaks or resource allocation problems with
# the server. If so, set this value to 300 or so, so that the
# resources will be cleaned up periodically.
#
# This should only be necessary if there are serious bugs in the
# server which have not yet been fixed.
#
# '0' is a special value meaning 'infinity', or 'the servers never
# exit'
max_requests_per_server = 0
# Automatically limit the number of accounting requests.
# This configuration item tracks how many requests per second
# the server can handle. It does this by tracking the
# packets/s received by the server for processing, and
# comparing that to the packets/s handled by the child
# threads.
#
# If the received PPS is larger than the processed PPS, *and*
# the queue is more than half full, then new accounting
# requests are probabilistically discarded. This lowers the
# number of packets that the server needs to process. Over
# time, the server will "catch up" with the traffic.
#
# Throwing away accounting packets is usually safe and low
# impact. The NAS will retransmit them in a few seconds, or
# even a few minutes. Vendors should read RFC 5080 Section 2.2.1
# to see how accounting packets should be retransmitted. Using
# any other method is likely to cause network meltdowns.
#
auto_limit_acct = no
}
######################################################################
#
# SNMP notifications. Uncomment the following line to enable
# snmptraps. Note that you MUST also configure the full path
# to the "snmptrap" command in the "trigger.conf" file.
#
#$INCLUDE trigger.conf
# MODULE CONFIGURATION
#
# The names and configuration of each module is located in this section.
#
# After the modules are defined here, they may be referred to by name,
# in other sections of this configuration file.
#
modules {
#
# Each module has a configuration as follows:
#
# name [ instance ] {
# config_item = value
# ...
# }
#
# The 'name' is used to load the 'rlm_name' library
# which implements the functionality of the module.
#
# The 'instance' is optional. To have two different instances
# of a module, it first must be referred to by 'name'.
# The different copies of the module are then created by
# inventing two 'instance' names, e.g. 'instance1' and 'instance2'
#
# The instance names can then be used in later configuration
# INSTEAD of the original 'name'. See the 'radutmp' configuration
# for an example.
#
#
# As of 3.0, modules are in mods-enabled/. Files matching
# the regex /[a-zA-Z0-9_.]+/ are loaded. The modules are
# initialized ONLY if they are referenced in a processing
# section, such as authorize, authenticate, accounting,
# pre/post-proxy, etc.
#
$INCLUDE mods-enabled/
}
# Instantiation
#
# This section orders the loading of the modules. Modules
# listed here will get loaded BEFORE the later sections like
# authorize, authenticate, etc. get examined.
#
# This section is not strictly needed. When a section like
# authorize refers to a module, it's automatically loaded and
# initialized. However, some modules may not be listed in any
# of the following sections, so they can be listed here.
#
# Also, listing modules here ensures that you have control over
# the order in which they are initialized. If one module needs
# something defined by another module, you can list them in order
# here, and ensure that the configuration will be OK.
#
# After the modules listed here have been loaded, all of the modules
# in the "mods-enabled" directory will be loaded. Loading the
# "mods-enabled" directory means that unlike Version 2, you usually
# don't need to list modules here.
#
instantiate {
#
# We list the counter module here so that it registers
# the check_name attribute before any module which sets
# it
# daily
# subsections here can be thought of as "virtual" modules.
#
# e.g. If you have two redundant SQL servers, and you want to
# use them in the authorize and accounting sections, you could
# place a "redundant" block in each section, containing the
# exact same text. Or, you could uncomment the following
# lines, and list "redundant_sql" in the authorize and
# accounting sections.
#
# The "virtual" module defined here can also be used with
# dynamic expansions, under a few conditions:
#
# * The section is "redundant", or "load-balance", or
# "redundant-load-balance"
# * The section contains modules ONLY, and no sub-sections
# * all modules in the section are using the same rlm_
# driver, e.g. They are all sql, or all ldap, etc.
#
# When those conditions are satisfied, the server will
# automatically register a dynamic expansion, using the
# name of the "virtual" module. In the example below,
# it will be "redundant_sql". You can then use this expansion
# just like any other:
#
# update reply {
# Filter-Id := "%{redundant_sql: ... }"
# }
#
# In this example, the expansion is done via module "sql1",
# and if that expansion fails, using module "sql2".
#
# For best results, configure the "pool" subsection of the
# module so that "retry_delay" is non-zero. That will allow
# the redundant block to quickly ignore all "down" SQL
# databases. If instead we have "retry_delay = 0", then
# every time the redundant block is used, the server will try
# to open a connection to every "down" database, causing
# problems.
#
#redundant redundant_sql {
# sql1
# sql2
#}
}
######################################################################
#
# Policies are virtual modules, similar to those defined in the
# "instantiate" section above.
#
# Defining a policy in one of the policy.d files means that it can be
# referenced in multiple places as a *name*, rather than as a series of
# conditions to match, and actions to take.
#
# Policies are something like subroutines in a normal language, but
# they cannot be called recursively. They MUST be defined in order.
# If policy A calls policy B, then B MUST be defined before A.
#
######################################################################
policy {
$INCLUDE policy.d/
}
######################################################################
#
# Load virtual servers.
#
# This next $INCLUDE line loads files in the directory that
# match the regular expression: /[a-zA-Z0-9_.]+/
#
# It allows you to define new virtual servers simply by placing
# a file into the raddb/sites-enabled/ directory.
#
$INCLUDE sites-enabled/
######################################################################
#
# All of the other configuration sections like "authorize {}",
# "authenticate {}", "accounting {}", have been moved to the
# the file:
#
# raddb/sites-available/default
#
# This is the "default" virtual server that has the same
# configuration as in version 1.0.x and 1.1.x. The default
# installation enables this virtual server. You should
# edit it to create policies for your local site.
#
# For more documentation on virtual servers, see:
#
# raddb/sites-available/README
#
######################################################################

View file

@ -0,0 +1,239 @@
######################################################################
#
# As of 2.0.0, FreeRADIUS supports virtual hosts using the
# "server" section, and configuration directives.
#
# Virtual hosts should be put into the "sites-available"
# directory. Soft links should be created in the "sites-enabled"
# directory to these files. This is done in a normal installation.
#
# If you are using 802.1X (EAP) authentication, please see also
# the "inner-tunnel" virtual server. You will likely have to edit
# that, too, for authentication to work.
#
# $Id: 083407596aa5074d665adac9606e7de655b634aa $
#
######################################################################
#
# Read "man radiusd" before editing this file. See the section
# titled DEBUGGING. It outlines a method where you can quickly
# obtain the configuration you want, without running into
# trouble. See also "man unlang", which documents the format
# of this file.
#
# This configuration is designed to work in the widest possible
# set of circumstances, with the widest possible number of
# authentication methods. This means that in general, you should
# need to make very few changes to this file.
#
# The best way to configure the server for your local system
# is to CAREFULLY edit this file. Most attempts to make large
# edits to this file will BREAK THE SERVER. Any edits should
# be small, and tested by running the server with "radiusd -X".
# Once the edits have been verified to work, save a copy of these
# configuration files somewhere. (e.g. as a "tar" file). Then,
# make more edits, and test, as above.
#
# There are many "commented out" references to modules such
# as ldap, sql, etc. These references serve as place-holders.
# If you need the functionality of that module, then configure
# it in radiusd.conf, and un-comment the references to it in
# this file. In most cases, those small changes will result
# in the server being able to connect to the DB, and to
# authenticate users.
#
######################################################################
server default {
listen {
type = auth
ipaddr = *
port = 0
limit {
max_connections = 16
lifetime = 0
idle_timeout = 30
}
}
listen {
ipaddr = *
port = 0
type = acct
limit {
}
}
# IPv6 versions of the above - read their full config to understand options
listen {
type = auth
ipv6addr = :: # any. ::1 == localhost
port = 0
limit {
max_connections = 16
lifetime = 0
idle_timeout = 30
}
}
listen {
ipv6addr = ::
port = 0
type = acct
limit {
}
}
}
server radius-wifi {
authorize {
rewrite_calling_station_id
if (User-Name =~ /^(.*)@(.*)/){
if (User-Name !~ /^(.*)@(.*)example(.*)/){
update control{
Proxy-To-Realm := 'FEDEREZ'
}
}
if ("%{request:User-Name}" =~ /^(.*)@(.*)example(.*)/){
update request{
Stripped-User-Name := "%{1}"
}
}
}
filter_username
preprocess
suffix
eap {
ok = return
}
expiration
logintime
pap
}
authenticate {
Auth-Type PAP {
pap
}
Auth-Type CHAP {
chap
}
Auth-Type MS-CHAP {
mschap
}
mschap
digest
eap
}
preacct {
preprocess
acct_unique
suffix
files
}
accounting {
detail
unix
exec
}
session {
}
post-auth {
update {
&reply: += &session-state:
}
exec
remove_reply_message_if_eap
Post-Auth-Type REJECT {
-sql
attr_filter.access_reject
eap
remove_reply_message_if_eap
}
}
pre-proxy {
}
post-proxy {
eap
}
}
server radius-filaire{
authorize{
re2o
expiration
logintime
pap
}
authenticate{
Auth-Type PAP{
pap
}
Auth-Type CHAP{
chap
}
Auth-Type MS-CHAP{
mschap
}
digest
eap
}
preacct{
preprocess
acct_unique
suffix
files
}
accounting{
}
session{
}
post-auth{
re2o
exec
}
pre-proxy{
}
post-proxy{
eap
}
}

View file

@ -0,0 +1,345 @@
# -*- text -*-
######################################################################
#
# This is a virtual server that handles *only* inner tunnel
# requests for EAP-TTLS and PEAP types.
#
# $Id: 2c6f9611bfc7b4b782aeb9764e47e832690739c4 $
#
######################################################################
server inner-tunnel {
#
# This next section is here to allow testing of the "inner-tunnel"
# authentication methods, independently from the "default" server.
# It is listening on "localhost", so that it can only be used from
# the same machine.
#
# $ radtest USER PASSWORD 127.0.0.1:18120 0 testing123
#
# If it works, you have configured the inner tunnel correctly. To check
# if PEAP will work, use:
#
# $ radtest -t mschap USER PASSWORD 127.0.0.1:18120 0 testing123
#
# If that works, PEAP should work. If that command doesn't work, then
#
# FIX THE INNER TUNNEL CONFIGURATION SO THAT IT WORKS.
#
# Do NOT do any PEAP tests. It won't help. Instead, concentrate
# on fixing the inner tunnel configuration. DO NOTHING ELSE.
#
listen {
ipaddr = 127.0.0.1
port = 18120
type = auth
}
# Authorization. First preprocess (hints and huntgroups files),
# then realms, and finally look in the "users" file.
#
# The order of the realm modules will determine the order that
# we try to find a matching realm.
#
# Make *sure* that 'preprocess' comes before any realm if you
# need to setup hints for the remote radius server
authorize {
if ("%{request:User-Name}" =~ /^(.*)@example(.*)/){
update request{
Stripped-User-Name := "%{1}"
}
}
#
# Take a User-Name, and perform some checks on it, for spaces and other
# invalid characters. If the User-Name appears invalid, reject the
# request.
#
# See policy.d/filter for the definition of the filter_username policy.
#
filter_username
re2o
#
# Do checks on outer / inner User-Name, so that users
# can't spoof us by using incompatible identities
#
# filter_inner_identity
#
# The chap module will set 'Auth-Type := CHAP' if we are
# handling a CHAP request and Auth-Type has not already been set
chap
#
# If the users are logging in with an MS-CHAP-Challenge
# attribute for authentication, the mschap module will find
# the MS-CHAP-Challenge attribute, and add 'Auth-Type := MS-CHAP'
# to the request, which will cause the server to then use
# the mschap module for authentication.
mschap
#
# Pull crypt'd passwords from /etc/passwd or /etc/shadow,
# using the system API's to get the password. If you want
# to read /etc/passwd or /etc/shadow directly, see the
# passwd module, above.
#
# unix
#
# Look for IPASS style 'realm/', and if not found, look for
# '@realm', and decide whether or not to proxy, based on
# that.
# IPASS
#
# If you are using multiple kinds of realms, you probably
# want to set "ignore_null = yes" for all of them.
# Otherwise, when the first style of realm doesn't match,
# the other styles won't be checked.
#
# Note that proxying the inner tunnel authentication means
# that the user MAY use one identity in the outer session
# (e.g. "anonymous", and a different one here
# (e.g. "user@example.com"). The inner session will then be
# proxied elsewhere for authentication. If you are not
# careful, this means that the user can cause you to forward
# the authentication to another RADIUS server, and have the
# accounting logs *not* sent to the other server. This makes
# it difficult to bill people for their network activity.
#
suffix
# ntdomain
#
# The "suffix" module takes care of stripping the domain
# (e.g. "@example.com") from the User-Name attribute, and the
# next few lines ensure that the request is not proxied.
#
# If you want the inner tunnel request to be proxied, delete
# the next few lines.
#
update control {
&Proxy-To-Realm := LOCAL
}
#
# This module takes care of EAP-MSCHAPv2 authentication.
#
# It also sets the EAP-Type attribute in the request
# attribute list to the EAP type from the packet.
#
# The example below uses module failover to avoid querying all
# of the following modules if the EAP module returns "ok".
# Therefore, your LDAP and/or SQL servers will not be queried
# for the many packets that go back and forth to set up TTLS
# or PEAP. The load on those servers will therefore be reduced.
#
eap {
ok = return
}
#
# Read the 'users' file
#files
#
# Look in an SQL database. The schema of the database
# is meant to mirror the "users" file.
#
# See "Authorization Queries" in sql.conf
#-sql
#
# If you are using /etc/smbpasswd, and are also doing
# mschap authentication, the un-comment this line, and
# enable the "smbpasswd" module.
# smbpasswd
#
# The ldap module reads passwords from the LDAP database.
#-ldap
#
# Enforce daily limits on time spent logged in.
# daily
expiration
logintime
#
# If no other module has claimed responsibility for
# authentication, then try to use PAP. This allows the
# other modules listed above to add a "known good" password
# to the request, and to do nothing else. The PAP module
# will then see that password, and use it to do PAP
# authentication.
#
# This module should be listed last, so that the other modules
# get a chance to set Auth-Type for themselves.
#
pap
}
# Authentication.
#
#
# This section lists which modules are available for authentication.
# Note that it does NOT mean 'try each module in order'. It means
# that a module from the 'authorize' section adds a configuration
# attribute 'Auth-Type := FOO'. That authentication type is then
# used to pick the appropriate module from the list below.
#
# In general, you SHOULD NOT set the Auth-Type attribute. The server
# will figure it out on its own, and will do the right thing. The
# most common side effect of erroneously setting the Auth-Type
# attribute is that one authentication method will work, but the
# others will not.
#
# The common reasons to set the Auth-Type attribute by hand
# is to either forcibly reject the user, or forcibly accept him.
#
authenticate {
#
# PAP authentication, when a back-end database listed
# in the 'authorize' section supplies a password. The
# password can be clear-text, or encrypted.
Auth-Type PAP {
pap
}
#
# Most people want CHAP authentication
# A back-end database listed in the 'authorize' section
# MUST supply a CLEAR TEXT password. Encrypted passwords
# won't work.
Auth-Type CHAP {
chap
}
#
# MSCHAP authentication.
Auth-Type MS-CHAP {
mschap
}
#
# For old names, too.
#
mschap
#
# Allow EAP authentication.
eap
}
######################################################################
#
# There are no accounting requests inside of EAP-TTLS or PEAP
# tunnels.
#
######################################################################
# Session database, used for checking Simultaneous-Use. Either the radutmp
# or rlm_sql module can handle this.
# The rlm_sql module is *much* faster
session {
radutmp
#
# See "Simultaneous Use Checking Queries" in sql.conf
# sql
}
# Post-Authentication
# Once we KNOW that the user has been authenticated, there are
# additional steps we can take.
#
# Note that the last packet of the inner-tunnel authentication
# MAY NOT BE the last packet of the outer session. So updating
# the outer reply MIGHT work, and sometimes MIGHT NOT. The
# exact functionality depends on both the inner and outer
# authentication methods.
#
# If you need to send a reply attribute in the outer session,
# the ONLY safe way is to set "use_tunneled_reply = yes", and
# then update the inner-tunnel reply.
post-auth {
re2o
Post-Auth-Type REJECT {
# log failed authentications in SQL, too.
-sql
attr_filter.access_reject
#
# Let the outer session know which module failed, and why.
#
update outer.session-state {
&Module-Failure-Message := &request:Module-Failure-Message
}
}
}
#
# When the server decides to proxy a request to a home server,
# the proxied request is first passed through the pre-proxy
# stage. This stage can re-write the request, or decide to
# cancel the proxy.
#
# Only a few modules currently have this method.
#
pre-proxy {
# Uncomment the following line if you want to change attributes
# as defined in the preproxy_users file.
# files
# Uncomment the following line if you want to filter requests
# sent to remote servers based on the rules defined in the
# 'attrs.pre-proxy' file.
# attr_filter.pre-proxy
# If you want to have a log of packets proxied to a home
# server, un-comment the following line, and the
# 'detail pre_proxy_log' section, above.
# pre_proxy_log
}
#
# When the server receives a reply to a request it proxied
# to a home server, the request may be massaged here, in the
# post-proxy stage.
#
post-proxy {
# If you want to have a log of replies from a home server,
# un-comment the following line, and the 'detail post_proxy_log'
# section, above.
# post_proxy_log
# Uncomment the following line if you want to filter replies from
# remote proxies based on the rules defined in the 'attrs' file.
# attr_filter.post-proxy
#
# If you are proxying LEAP, you MUST configure the EAP
# module, and you MUST list it here, in the post-proxy
# stage.
#
# You MUST also use the 'nostrip' option in the 'realm'
# configuration. Otherwise, the User-Name attribute
# in the proxied request will not match the user name
# hidden inside of the EAP packet, and the end server will
# reject the EAP request.
#
eap
}
} # inner-tunnel server block

42
install-buster.sh Executable file
View file

@ -0,0 +1,42 @@
echo "deb http://deb.debian.org/debian buster-backports main contrib" > /etc/apt/sources.list.d/backports.list
apt update
cat requirements-apt.txt | xargs apt install -y
cat requirements-apt-backports.txt | xargs apt install -t buster-backports -y
FREERADIUS_CLIENTS="freeradius3/clients.conf"
FREERADIUS_AUTH="auth.py"
FREERADIUS_AUTH_CONFIG="config.ini.example"
FREERADIUS_RE2OAPI="re2oapi"
FREERADIUS_RADIUSD="freeradius3/radiusd.conf"
FREERADIUS_MOD_PYTHON="freeradius3/mods-enabled/python"
FREERADIUS_MOD_EAP="freeradius3/mods-enabled/eap"
FREERADIUS_SITE_DEFAULT="freeradius3/sites-enabled/default"
FREERADIUS_SITE_INNER_TUNNEL="freeradius3/sites-enabled/inner-tunnel"
EDITOR="nano"
configure_radius() {
### Usage: configure_radius
#
# This function configures freeradius.
###
echo "Configuring Freeradius ..."
test -f "$(pwd)/config.ini" && echo "config.ini exists" || cp $(pwd)/$FREERADIUS_AUTH_CONFIG $(pwd)/config.ini
cat $FREERADIUS_CLIENTS >> /etc/freeradius/3.0/clients.conf
ln -fs $(pwd)/$FREERADIUS_AUTH /etc/freeradius/3.0/auth.py
ln -fs $(pwd)/config.ini /etc/freeradius/3.0/config.ini
ln -fs $(pwd)/$FREERADIUS_RE2OAPI /etc/freeradius/3.0/re2oapi
ln -fs $(pwd)/$FREERADIUS_RADIUSD /etc/freeradius/3.0/radiusd.conf
ln -fs $(pwd)/$FREERADIUS_MOD_PYTHON /etc/freeradius/3.0/mods-enabled/python
ln -fs $(pwd)/$FREERADIUS_MOD_EAP /etc/freeradius/3.0/mods-enabled/eap
ln -fs $(pwd)/$FREERADIUS_SITE_DEFAULT /etc/freeradius/3.0/sites-enabled/default
ln -fs $(pwd)/$FREERADIUS_SITE_INNER_TUNNEL /etc/freeradius/3.0/sites-enabled/inner-tunnel
$EDITOR /etc/freeradius/3.0/clients.conf
$EDITOR /etc/freeradius/3.0/config.ini
echo "Configuring Freeradius: Done"
}
configure_radius

1
re2oapi Submodule

@ -0,0 +1 @@
Subproject commit 729cfcb7acbf669a11e507f55b326d87178628d5

View file

@ -0,0 +1,3 @@
freeradius-utils=3.0.21+dfsg-1~bpo10+1
freeradius=3.0.21+dfsg-1~bpo10+1
freeradius-python3

3
requirements-apt.txt Normal file
View file

@ -0,0 +1,3 @@
libfreeradius3=3.0.21+dfsg-1~bpo10+1
freeradius-common
python3-iso8601